
Formalisms for Sequence Modeling

Jason Eisner — JHU 601.765

February 19, 2018

This class aims to present many methods in a unified way. To highlight their connections, we will
adopt some shared notation and terminology, and stick to them as much as possible. This document
serves as a concise introduction and reference to our notation, technical vocabulary, and formalisms. It
may be extended or revised over the course of the class. Refer to it whenever you are disoriented. Post
any questions or suggestions on Piazza.

In order to remain concise, this document only provides definitions. It does not discuss the properties
or applications of the defined objects, give examples, or present algorithms for working with them.

1 Typographic conventions (just so you know)

Technical terms are marked with a blue background when they are introduced. Terms that are intro-
duced in footnotes are provided there for reference but will generally not be used further.

We consistently use italic font for real-valued variables, across all alphabets:1 scalars s ,λ, vectors s ,λ
in boldface, and matrices S ,Λ in uppercase boldface. Uppercase scalars such as F,G usually represent
aggregate quantities.

Integer indices into sequences, vectors, and matrices are also written as italic lowercase letters,
typically i , j , k . In this case the corresponding uppercase letter denotes the upper bound. For example,
a matrix W ∈RI×J would have elements written like Wi j for 1≤ i ≤ I , 1≤ j ≤ J .

The font of a function symbol is determined by the type of the returned value, e.g., h (t) is a different
vector for each t . Similarly, boldface h1, h2, . . . denotes a sequence of vectors, with hi j representing the
scalar j th element of the vector h i .

We use upright font for variables that range over a discrete, unordered set: y,ω denote symbols (such
as letters or words), while y,ω denote strings (finite sequences of symbols, such as words or sentences).

For literal symbols, we use typewriter font: a, b. Strings are written by concatenation: abc. For
literal symbols with multi-character names, we instead use small caps, and use whitespace to set them
off from adjacent symbols in a string: BOS abc EOS, or HELLO WORLD.

The string y = y1 · · ·yJ for some J ∈ N. For convenience, for any 0 ≤ i ≤ j ≤ J , we define yi : j
def=

yi+1 · · ·y j (a substring of length j−i), y: j
def= y0: j = y1 · · ·y j (the prefix of length j), and y j :

def= y j :J = y j+1 · · ·yJ

(the suffix of length J − j).
In general we need to declare a variable’s set of possible values (its type). When this set is fixed by

the problem setting, we use calligraphic uppercase: y ∈Y , y ∈Y . Sets that are fixed across mathematics
are written in blackboard bold (the natural numbersN, the real numbersR), so we might declare s ∈RD

for a vector. When random variables are made explicit, they are generally written as the corresponding
uppercase letter in the same font, e.g., y, y,λmight denote possible values of random variables Y, Y ,Λ.

2 Input and output

This class focuses on conditional probability distributions p (y | x). That is, we are interested in modeling
the distribution of the output y given a fully observed input x.2

1As recommended for physical quantities by international standard ISO-80000-2. To this end, consistent fonts are arranged
via the LATEX isomath package.

2The use of x for input and y for output has become common in machine learning.

1

In general x and y will be structured objects. X denotes the input space of possible x values. For
each input x, the distribution p (y | x) is a functionY x→R≥0 whereY x is the output space that we will
consider computationally.

The methods in the class can be generalized to many structured prediction problems. However, our
canonical problem takes x to be a string of length J and allows y to range over strings of the same length
J . Then x ∈X ⊆X ∗ whereX is a fixed input alphabet, and y ∈Y x ⊆Y J where J = |x| andY is a fixed
output alphabet.3

Note that we did not assume identical input and output alphabets (X =Y), nor did we assume that
the output space includes all length-J strings over the output alphabet (Y =Y J), although these are
common cases.

Question 2.1 How would you do language modeling?

Question 2.2 How would you do BIO tagging?

3 Observations

A training or test example is a pair 〈x,Y 〉 where Y ⊆ Y x is an observation of the output—that is, a
non-empty set that is known to contain the output string.

• A fully observed output has the formY = {y} (a singleton set). In this case we may abbreviate the
example as 〈x, y〉.

• An unobserved output isY =Y x, which provides no information about y.

• A partially observed output is anything in between.

Note that the input x is always fully observed. In general,

• training outputs will be fully or partially observed, so that they contain information that can be
learned from;

• test outputs will be unobserved or partially observed, so that they omit information that must be
predicted.

We will often assume that examples are presented in the alternative form 〈x, o〉, where the observation
o is now specified as a string of length J . What setY does o describe? Each observed symbol o j is an
observation of the output symbol y j , meaning that it is compatible with some set of possibilities for y j ,

denotedYo j
⊆Y . Thus, observing the string o is equivalent to observing the setY x,o

def=Y x∩(Yo1
· · ·YoJ

).
As a special case, it is often convenient to suppose that each output symbol y ∈ Y is an ordered

pair 〈o, v〉, where v is a latent symbol that specifies the unobserved portion of y. Thus o is compatible
withYo = {〈o, v〉 : v ∈V }. Then given the observation o, predicting the complete string y is equivalent to
predicting its unobserved portion—the latent string v.4

Question 3.1 IfY ⊆Y x is a regular language, then how can it be described using o?
3In the literature of formal languages and transducers, the alphabetsX ,Y are conventionally called Σ,∆.
4Generalizing slightly, we can get the same effect without actually requiringY to consist of ordered pairs. It suffices to say

that for every possible observed symbol o, there is a bijection between the possible complete symbolsYo and their possible
latent parts Vo. In other words, there exist functions y(), v() so that it follows that y j = y(o j , v j) once we know v j , and moreover
v j = v(o j , y j) is the only choice for v j that would yield that y j . Remark: It is important that v j be uniquely determined by y j

(that is, y j does not lose any information from v j). It means that when we sum over the possible outputs y ∈Y x,o to get p (o | x),
we do not have to sum over possible v values as well. Only one v value is compatible with each output y.

2

4 Decision theory: Actions and rewards

We are concerned with building agents—systems that make decisions. Given an input x (and perhaps a
partially observed output o), an agent may decide how to act based on what it thinks y is. We will allow
the agent to choose a string a of length J , in some setA x ⊆A J .

An agent that is designed to predict y from x takesA x =Y x and is trained to choose a≈ y. Other
agents might be designed to predict only y’s latent string v or y’s observable string o. In all these cases, a
is called a prediction. In general, however, an agent can be designed to choose any real-world response
to x: so in general we refer to a as a plan consisting of the actions a1, . . . , a J .

Some predictions are more accurate than others, and some plans work better than others. The
reward function5 R (a | x, y) evaluates the quality of the prediction or plan a given that the true output is
y. The reward function is specified externally: it defines what kinds of predictions or other actions are
valuable for the applied task.

It is often useful to break down the total reward as a sum R = r1+ . . .+ rJ , where r j is regarded as the
reward of the individual action or predicted symbol a j (possibly in context).

Question 4.1 How would you use this framework if the agent simply needs to decide whether x is “spam”?
How would you penalize precision and recall errors?

5 Probability distributions

We now turn to probabilistic modeling, which is often useful in making decisions.
p ∗(x, y) denotes the true joint distribution over 〈x, y〉 pairs. The test examples on which we will have

to choose actions will be drawn from this unknown distribution.
p ∗(y | x) or more generally p ∗(y | x, o) is known as the posterior predictive distribution (given evi-

dence x or x, o respectively). It is fully determined by p ∗(x, y).
pθ (y | x) or pθ (y | x, o)6 is an estimated conditional distribution, which the agent may consult in order

to make a decision on a test input x. We will focus on estimating pθ (y | x) since that fully determines
p ∗(y | x, o) for any o.7

P = {pθ : θ ∈Θ} is our parametric model: the family of conditional distributions pθ (y | x) that we
will consider. After specifyingP , we will try to estimate a value of the parameter vector θ such that the
distribution pθ (y | x) tends to be a useful approximation to p ∗(y | x).8

p̂ (x, y) refers to the empirical distribution when all training examples are fully observed. That is,

p̂ (x, y) = c (x,y)
n where c (x, y) denotes the number of occurrences of (x, y) in the training dataset.

qφ(· · ·) is our standard name for any distribution—such as a proposal distribution or a variational
approximation—that we temporarily construct within an algorithm for computational reasons. We
typically select such a distribution qφ from a variational familyQ = {qφ : φ ∈ Φ} of computationally
tractable distributions that we have designed.

Outside this handout, I may abbreviate pθ , qφ as p , q .

5Loss is the negative of reward. Decision theory and machine learning traditionally specify loss functions, whereas rein-
forcement learning papers usually specify reward functions. I opted to use reward functions so that we are consistently solving
maximization problems—maximizing log-probability while training, and maximizing expected reward when predicting.

6p ∗(y | x, o) could be written more precisely using random variables as p ∗(Y = y | X = x, Y ∈Y x,o).
7Since p ∗(y | x, o) = p ∗(o, y | x)/p ∗(o | x), it is proportional to p ∗(y | x) if y ∈Y x,o and is 0 otherwise.
8Especially for the x that are probable according to p ∗. That is, we want p ∗(x)pθ (y | x) to be a good approximation of p ∗(x, y).

3

6 Datasets

D = {〈x1, o1〉, . . . , 〈xN , oN 〉} denotes the training dataset. We useD to help us estimate θ , under

• the independent and identically distributed (IID) assumption thatD is an observation of N pairs
〈xn , yn 〉 that were drawn independently from the same distribution,

• the in-domain assumption that this distribution was p ∗, and

• the missing at random (MAR) assumption that whenD contains only a partial observation on of
yn , no additional information about the missing data vn is provided by the fact that vn is missing.

Together, these assumptions imply that the posterior distribution of yn givenD is indeed p ∗(Y | xn , on).

7 More decision theory: Decision rules and action values

The expectation
∑

y p (y | x) f (y) can be written informally as E[f (y)], or with increasing degrees of
explictness as Ey[f (y)] or Ey|x[f (y)] or Ey∼p [f (y)] or Ey∼p (·|x)[f (y)].

A decision rule is a method for choosing a plan a given input x. A deterministic decision rule can be
written as a function a=π(x). More generally, a stochastic decision rule is a distribution π(a | x).

Any decision rule may be expressed as a policy, which chooses the plan a one action a j at a time. A
deterministic policy is a function a j =π(x, a: j−1), while a stochastic policy is a distributionπ(a j | x, a: j−1).
In general, these may be selected from some fixed parametric family by choosing the parameters.

Given x, the value of a plan a is defined to be its expected reward under p ∗,9 Q (a | x) def=
∑

y∈Y x
p ∗(y |

x)R (a | x, y).10 Here the expectation is taken under the posterior predictive distribution, that is, p ∗(y | x)
or more generally p ∗(y | x, o). A Bayes decision rule chooses a plan a that maximizes Q (a | x): that is,
decision(x) = argmaxa Q (a | x).11

In our setting, we do not actually know Q because we do not know the true distribution p ∗. However,
if we can estimate pθ ≈ p ∗, we can use pθ as a drop-in replacement for p ∗. That is, we can define the

estimated value Q̂ (a | x) def= Ey∼pθ [R (a | x, y)], and use the rule decision(x) = argmaxa Q̂ (a | x).12 Notice that
in this approach, θ is tuned to make pθ ≈ p ∗ without considering rewards; the decision rule then follows
from pθ and the reward function.

When a is intended to be a prediction of y (or o or v), a decision rule is sometimes called a prediction rule
or a decoder. In this case, the Bayes decision rule or the above approximation to it is commonly known
as a minimum Bayes risk (MBR) decoder (see footnote 9), although in our terminology it would better
be called a maximum value decoder.

8 Decision processes

Different problem settings arise in machine learning. So far we have considered prediction and decision
settings. The setting used for reinforcement learning (RL) requires two changes.

9Similarly, the risk of an plan is defined as its expected loss. (Recall from footnote 5 that loss is negated reward.) The
specific risk defined here would be called the posterior predictive risk of the plan a, because the expectation is taken under the
posterior predictive distribution. By contrast, the Bayes risk of a averages over x as well as y: Q (a) =

∑

x∈X ,y∈Y x
p ∗(x, y)R (a | x, y).

10The traditional Q -function notation in RL is Q (x, a). But I prefer writing Q (a | x), which should be read “the value of a given
x,” similar to a conditional probability. Indeed, its definition strongly resembles a valid conditional probability formula.

11There may exist multiple Bayes decision rules, but these differ only in how they break ties.
12There may also be other ways to construct an estimated value function Q̂ . Alternatively, we can train a policy so that it

tends to prefer high-value plans, without necessarily fitting Q̂ . An actor-critic method does both: it jointly trains a policy π

(the actor) and a value estimator Q̂ (the critic).

4

There is still a true probability distribution p ∗(y | x), which is called the environment. However, the
agent’s job is now to choose x! In other words, there is no separate a; we identify a with x.

The reward function now has the form R (x, y) rather than R (a | x, y). The value of the plan x is now
Ey∼pθ [R (x, y)], so it is still an expected reward where the expectation is over y. The goal is still to choose
a high-value action.

The other major change is that the decision rule is replaced with an interactive decision process.
The agent and the environment take turns choosing the characters of their strings x and y, so they can
react to one another.13 At each time step j = 1,2, . . ., the agent first draws its action x j (traditionally
called a j) from a policy π(x j | x: j−1, y: j−1).14 The environment then responds by drawing its output
symbol y j from the distribution p ∗(y j | x: j , y: j−1).

In a partially observable decision process, the agent’s policy is not allowed to depend on all of the
environment’s previous output y: j−1, but only on the observables o: j−1 that the agent has actually seen.

It is traditional to define the reward function as R (x, y) =
∑

j r j (x: j , y: j), so that the reward is accumu-
lated one step at a time: R = r1+ r2+ · · · . This decomposition involves no loss of generality.

Notice that in a decision process, p ∗(y | x) is factored as
∏

j p ∗(y j | x: j , y: j−1). This deliberately loses

generality: it means that the environment’s output y j cannot depend on the agent’s future actions x j :.
15

Conversely, the agent’s next action x j+1 cannot depend on the environment’s future outputs y j :.
However, it could still consider how the environment might react to a future plan x j : = x j+1x j+2 · · · . The
(residual) value of this future plan is an expectation of r j+1+ r j+2+ . . ., where the expectation is taken
under p ∗(y | x). That is, computing the value must guess the environment’s unknown future outputs y j :,
as well as the unknown past outputs y: j in the partially observable case. An agent with knowledge of p ∗

could consider these values in its policy for selecting x j+1.

9 Scoring functions

Given an input x, we will evaluate the “goodness” of a candidate output y by its score Gθ (x, y).16 So
the scoring function is Gθ : {〈x, y〉 : x ∈X , y ∈ Y x} → R∪ {−∞}, with parameters θ . As before, I may
suppress the θ subscript for brevity. We will often define

Gθ (x, y) =
J
∑

j=1

gθ (x, y: j) (1)

where the j th summand can be viewed as scoring output character y j given all previous outputs, much
as in most language models. These summands are also called scores (or subscores).

Remark: A simple decision rule for predicting y is to choose the highest-scoring y. There exist meth-
ods (e.g., the structured perceptron, the structured support vector machine, direct loss minimization,
and bandit algorithms) for choosing θ so that this simple decision rule achieves high value (equivalently,
low Bayes risk).

13If instead the agent must choose x all at once, then we are in the bandit setting. This is equivalent to the special case of RL
in which J = 1. The environment in this case is called a multi-armed bandit, i.e., a slot machine whose arms are the possible
choices of x. Traditionally in the bandit setting, the agent does not get to observe y but only the resulting reward R .

14I have written this as a stochastic policy; a deterministic policy is a special case.
15Environments do not even depend on the agent’s policy (i.e., its probabilities of future actions). Environments remain fixed

while the agent chooses its policy; they are random, not cooperative or adversarial. As we will see in the next paragraph, this is
a fundamental asymmetry between agent and environment. An environment that could adapt to the agent’s policy would
be deemed another agent—e.g., an opponent—rather than an environment. That multi-agent setting is called game playing
rather than reinforcement learning.

16This is unrelated to the use of “score” in statistics (i.e., the gradient of log-likelihood with respect to a model’s parameters).

5

I will sometimes abbreviate the score as simply G . We will also use the shorthand notation G j for
the prefix score of the prefix y: j , defined by G j =G j−1+ gθ (x, y: j)with base case G0 = 0. Then the total
score of y is G =G J .

Scores fall inR∪{−∞}. In all of our methods, an output y with score of −∞ can safely be treated as
if it is not even in the output spaceY x. Thus, it is sometimes convenient to define a simple output space
that is larger than necessary, such as Y x = Y J , and exclude ill-formed outputs from it using scores.
Specifically, any “bad configuration” that makes an output ill-formed should receive a subscore of −∞,
so that that output gets a total score of −∞.

10 Exponential probability models (Boltzmann distributions)

This class focuses on probability models. We will ordinarily derive our parametric probability model
from a parametric scoring function as follows:17

pθ (y | x)
def=

1

Z (x)
p̃θ (y | x) (2)

where the normalizer18Z (x) ensures that the distribution sums to 1,

Z (x) def=
∑

y∈Y x

p̃θ (y | x) (3)

and the unnormalized conditional distribution p̃θ is obtained from the scores as

p̃θ (y | x)
def= expGθ (x, y) =

J
∏

i=1

exp gθ (x, y: j)
︸ ︷︷ ︸

call thisψ j (x,y: j)

=
J
∏

i=1

ψ j (x, y: j) (4)

Here the exponentiated subscoreψ j (x, y: j)≥ 0 is referred to as simply a factor—that is, a factor of
the unnormalized probability p̃ . The functionψ j is traditionally called a potential function.19 Note
that a subscore of −∞ yields a 0 factor, which always results in an overall probability of pθ (y | x) = 0.
These are usually structural zeroes, meaning that their 0 value is imposed by the structure of the model
and does not depend on how the parameters θ are set.

10.1 Marginal and conditional probabilities

Given a training or test example 〈x, o〉 (see §3), we are often interested in the marginal distribution

p (o | x) =
∑

y∈Y x,o

p (y | x) =
∑

y∈Y x,o

1

Z (x)
expGθ (x, y) =

∑

y∈Y x,o
expGθ (x, y)

∑

y∈Y x
expGθ (x, y)

=
Z (x, o)

Z (x)
(5)

where the last step defines Z (x, o) to sum overY x,o just as Z (x) sums overY x. We are also sometimes
interested in the conditional distribution

p (y | x, o) =
p (y | x)

p (Y | x)
=

1
Z (x) expGθ (x, y)

1
Z (x)Z (x, o)

=
1

Z (x, o)
expGθ (x, y) (6)

17Often such models are expressed as exp−E instead of expG , where E (x, y) =−G (x, y) is called the energy of 〈x, y〉. This
leads to the name energy-based model.

18Another common name for Z (x) is the partition function. Like “energy,” this term comes from statistical physics.
19Which appears to be a misnomer. One would expect a potential function to return a potential. However, as I understand

the physics analogy, the potential energy contributed by y j is not actuallyψ j (x, y: j) but rather − logψ j (x, y: j) =−gθ (x, y: j).

6

10.2 Special case: Locally normalized models

In general, the normalizer Z (x) is necessary to ensure that pθ is a proper probability distribution. Since
it is defined by the “global” sum overY x, we say that the model is globally normalized.

However, global normalization turns out to be unnecessary if each potential functionψ j happens
to specify a conditional distribution over symbols y j ∈Y . Formally, for any x, y: j−1, we happen to have
∑

y j∈Y ψ j (x, y: j). This can be ensured by using a locally normalized model as follows.

The true conditional distribution can always be factored into a product of local conditional proba-
bilities (as commonly noted in language modeling):

p ∗(y | x) =
J
∏

i=1

p ∗(y j | x, y: j−1) (7)

without any global normalizing constant. We can similarly define our model in a factored form:

pθ (y | x)
def=

J
∏

i=1

pθ (y j | x, y: j−1) (8)

where each local conditional distribution pθ approximates the corresponding p ∗ factor. Specifically, we
can choose to fit all the p ∗ factors using a single “locally normalized” sub-model of the form

pθ (y j | x, y: j−1)
def=ψ j (x, y: j) =

1

Z (x, y: j−1)
ψ̃ j (x, y: j) (9)

where ψ̃ j (x, y: j)
def= exp g̃θ (x, y: j) (10)

and the local normalizer Z (x, y: j−1) is chosen to make (9) sum to 1.

Clearly (8) is an example of (4), with gθ (x, y: j)
def= logψ j (x, y: j). However, thanks to the special structure

of the potential functionsψ j , the global normalizing constant Z (x) is now guaranteed to be 1 and can
be dropped.

Notice that a globally normalized model may be defined by directly specifying the local scoring func-
tion gθ , from which we obtainψ. A locally normalized model is defined by specifying an unnormalized
local scoring function g̃θ , from which we obtain ψ̃,ψ, and finally gθ . This may be viewed as an indirect
way of specifying gθ that guarantees the desired condition onψ.

10.3 Restricting summations to the output space

pθ (y | x) is only defined for y ∈Y x. We always want
∑

y∈Y x
pθ (y | x) = 1. In the globally normalized model,

we achieved this by summing over y ∈Y x when computing the global normalizer in (3).
In the locally normalized model (9), it is slightly harder to ensure that we do not waste probability

mass on illegal strings. We must define

Z (x, y: j−1)
def=

∑

y∈Yx,y: j−1

ψ̃ j (x, y: j) (11)

whereYx,y: j−1

def= {y : (∃y j : ∈Y J− j) y: j−1 y y j : ∈Y x} is the set of legal choices for the next character y j .
Equivalently (as §9 suggested), we could sum over a larger space but force the probability of the

illegal choices to 0. Define g̃θ (x, y: j) =−∞whenever y j /∈Yx,y: j−1
. Then it is safe to sum over all y ∈Y in

(11). (In the globally normalized model, defining g with the same 0 values would make it safe to sum
over all y ∈Y J .)

7

10.4 Joint models

A different approach to obtaining a conditional distribution pθ (y | x) is to first train a joint distribution
pθ (x, y)≈ p ∗(x, y), and then conditionalize it. This means that θ is being asked to explain the x values—
not just the y values—thatD has drawn from p ∗. Joint training could either help or hurt the fit of pθ (y | x)
to p ∗(y | x), depending on the qualities of the joint modelP .

In order to write down a joint distribution, we have two formal options:

Change the formulas. The traditional solution is to write down joint versions of the conditional models
above, moving x to the left side of the probability bar.

• For the globally normalized case, define p̃θ (x, y) def= expGθ (x, y), and normalize it via pθ (x, y) def=
1
Z p̃θ (x, y). The global normalizer Z =

∑

x∈X
∑

y∈Y x
p̃θ (x, y) now requires a double sum.

• For the locally normalized case, define pθ (x, y) def=
∏J

i=1 pθ (x j , y j | x: j−1, y: j−1). The local
normalizer now has the form Z (x: j−1, y: j−1) and requires a double sum over x j and y j .

Change the problem mapping. A different solution is to change the problem setup. Recall from §3 that
we can take each symbol y to be an ordered pair 〈o, v〉. Thus, we already have enough machinery
to handle joint distributions: p (y | x) can be regarded as a joint distribution p (o, v | x). This is still
conditioned on x, which may be useful: we can use x to specify “background information” such
as the domain of the example, so that we get a different joint distribution in each domain. Or we
can ignore x by always taking it to be -J (a string of J dashes), where J is the length of o.

We can thus regard our problem’s 〈input, output〉 pairs as 〈o, v〉 pairs instead of 〈x, y〉 pairs. Fitting
the model pθ (y | x) = pθ (o, v | x) is now fitting a joint distribution over 〈input, output〉 pairs (condi-
tioned on the optional background information x). When o is observed at test time, the posterior
predictive distribution pθ (y | x, o) is tantamount to pθ (v | x, o), a conditional distribution of output
v given input o as desired.

Which option is better? Unfortunately both are useful:

• Changing the formulas is best when we are focusing on a single formalization of the problem,
so that we have fixed 〈x, y〉 as the names of the 〈input, output〉 strings. We want to compare the
behavior of conditional vs. joint models.

• Changing the mapping is best when we are focusing on a single algorithm. Although the algorithm
assumes a conditional model, we would like to be able to reuse its implementation or analysis for
joint models.

10.5 Heated and cooled distributions

For computational reasons, it is sometimes useful to consider related distributions. These distributions
are marked with an exponent β ≥ 0, the inverse temperature. We define the unnormalized distribution

p̃
β
θ (y | x) = (p̃θ (y | x))

β =
J
∏

i=1

ψ j (x, y: j)
β = exp

�

βGθ (x, y)
�

(12)

and normalize it as usual:

Z β (x) def=
∑

y∈Y x

p̃
β
θ (y | x) (13)

p
β
θ (y | x)

def=
1

Z β (x)
p̃
β
θ (y | x) (14)

8

In general, such a normalized distribution is called a Boltzmann distribution or a Gibbs distribution
(more properly, a conditional distribution, since it is conditioned on x). When β = 1, this is our main
distribution of interest, as already defined at the start of §10. The heated distributions obtained with
β < 1 are “flatter” (more uniform), whereas the cooled distributions obtained with β > 1 are “sharper”

and place more of the probability mass on the higher-scoring outputs. At the limit β =∞, p
β
θ places all

its probability mass on the single highest-scoring output (or outputs, in case of ties).

11 Feature vectors

12 Training objectives

13 States and belief states

14 Weight semirings

15 Graphical models

16 FSTs and options

17 Trees and grammars

18 Proof systems

19 Neural networks

9

Index

actions, 3
actor-critic method, 4
agents, 3

bandit setting, 5
Bayes decision rule, 4
Bayes risk, 4
blue background, 1
Boltzmann distribution, 9

complete string, 2
conditional distribution, 6
cooled, 9

decision process, 5
decision rule, 4
decoder, 4
drop-in replacement, 4

energy, 6
energy-based model, 6
environment, 5
estimated conditional distribution, 3
example, 2

factor, 6
family, 3
fully observed, 2

game playing, 5
Gibbs distribution, 9
globally normalized, 7

heated, 9

IID, see independent and identically distributed
in-domain, 4
independent and identically distributed, 4
input, 1
input alphabet, 2
input space, 2
inverse temperature, 8

latent string, 2
latent symbol, 2
local conditional distribution, 7
local normalizer, 7

locally normalized, 7
Loss, 3

MAR, see missing at random
marginal distribution, 6
MBR, see minimum Bayes risk
minimum Bayes risk, 4
missing at random, 4
multi-agent, 5
multi-armed bandit, 5

normalizer, 6

observation, 2
observed symbol, 2
output, 1
output alphabet, 2
output space, 2

parameter vector, 3
parametric model, 3
partially observable decision process, 5
partially observed, 2
partition function, 6
plan, 3
policy, 4
posterior predictive distribution, 3
posterior predictive risk, 4
potential function, 6
prediction, 3
prediction rule, 4
prefix, 1
prefix score, 6
problem settings, 4

reinforcement learning, 4
reward function, 3
risk, 4
RL, see reinforcement learning

score, 5
scoring function, 5
strings, 1
structural zeroes, 6
subscores, 5
substring, 1
suffix, 1

10

symbols, 1

training dataset, 4
true joint distribution, 3

unnormalized conditional distribution, 6
unobserved, 2

value, 4
variational family, 3

11

	Typographic conventions (just so you know)
	Input and output
	Observations
	Decision theory: Actions and rewards
	Probability distributions
	Datasets
	More decision theory: Decision rules and action values
	Decision processes
	Scoring functions
	Exponential probability models (Boltzmann distributions)
	Marginal and conditional probabilities
	Special case: Locally normalized models
	Restricting summations to the output space
	Joint models
	Heated and cooled distributions

	Feature vectors
	Training objectives
	States and belief states
	Weight semirings
	Graphical models
	FSTs and options
	Trees and grammars
	Proof systems
	Neural networks

