EN.601.765: MACHINE LEARNING: LINGUISTIC & SEQUENCE MODELING

Lecture 1: August 24

Lecturer: Jason Eisner & Ryan Cotterell

This lecture's notes illustrate some uses of various Lagrance and the solution of the solution

1.1 Some theorems and stuff

We now delve right into the proof.

Lemma 1.1 *This is the first lemma of the lecture.*

Proof: The proof is by induction on For fun, we throw in a figure.

Figure 1.1: A Fun Figure

This is the end of the proof, which is marked with a little box.

1.1.1 A few items of note

Here is an itemized list:

- this is the first item;
- this is the second item.

Here is an enumerated list:

- 1. this is the first item;
- 2. this is the second item.

Here is an exercise:

Exercise: Show that $P \neq NP$.

Here is how to define things in the proper mathematical style. Let f_k be the AND - OR function, defined by

$$f_k(x_1, x_2, \dots, x_{2^k}) = \begin{cases} x_1 & \text{if } k = 0; \\ AND(f_{k-1}(x_1, \dots, x_{2^{k-1}}), f_{k-1}(x_{2^{k-1}+1}, \dots, x_{2^k})) & \text{if } k \text{ is even}; \\ OR(f_{k-1}(x_1, \dots, x_{2^{k-1}}), f_{k-1}(x_{2^{k-1}+1}, \dots, x_{2^k})) & \text{otherwise.} \end{cases}$$

Sp 2018

Scribes: scribe-name

Theorem 1.2 *This is the first theorem.*

Proof: This is the proof of the first theorem. We show how to write pseudo-code now.

Consider a comparison between *x* and *y*:

```
if x or y or both are in S then
answer accordingly
else
Make the element with the larger score (say x) win the comparison
if F(x) + F(y) < \frac{n}{t-1} then
F(x) \leftarrow F(x) + F(y)
F(y) \leftarrow 0
else
S \leftarrow S \cup \{x\}
r \leftarrow r+1
endif
endif
```

This concludes the proof.

1.2 Next topic

Here is a citation, just for fun [CW87].

References

[CW87] D. COPPERSMITH and S. WINOGRAD, "Matrix multiplication via arithmetic progressions," *Proceedings* of the 19th ACM Symposium on Theory of Computing, 1987, pp. 1–6.